1,383 research outputs found

    Generation Mixing of Sneutrinos in Heavier Chargino Decay

    Full text link
    The heavier chargino decay could yield two charged leptons of different generations, owing to generation mixing of sneutrinos. We discuss the possibility of producing ee and ÎŒ\mu through this process in near future collider experiments. The analyses are made systematically in the supersymmetric extension of the standard model without assuming a specific scenario for the mixing. Production of the heavier chargino is evaluated in e+e−e^+e^- collisions. In the parameter region consistent with nonobservation of the radiative ÎŒ\mu decay, sizable parts lead to a detectable branching ratio for the generation-changing decay of the heavier chargino.Comment: 22 pages, Revtex, 7 figures. v2: For the total width of the heavier chargino, the contribution from the decay into a charged slepton and a neutirno has been included. The figures (Figs. 2, 3, 4, 5), the equations and the related descriptions in sections II and III have been revised. Several references and equations added. v3: Several sentences of section I and V have been rewritten, conclusions unchange

    Low Energy Dynamics of Monopoles in Supersymmetric Yang-Mills Theories with Hypermultiplets

    Full text link
    We derive the low energy dynamics of monopoles and dyons in N=2 supersymmetric Yang-Mills theories with hypermultiplets in arbitrary representations by utilizing a collective coordinate expansion. We consider the most general case that Higgs fields both in the vector multiplet and in the hypermultiplets have nonzero vacuum expectation values. The resulting theory is a supersymmetric quantum mechanics which has been obtained by a nontrivial dimensional reduction of two-dimensional (4,0) supersymmetric sigma models with potentials.Comment: 17pages, LaTeX, minor changes, references added, version published in JHE

    Soliton solutions of Calogero model in harmonic potential

    Full text link
    A classical Calogero model in an external harmonic potential is known to be integrable for any number of particles. We consider here reductions which play a role of "soliton" solutions of the model. We obtain these solutions both for the model with finite number of particles and in a hydrodynamic limit. In the latter limit the model is described by hydrodynamic equations on continuous density and velocity fields. Soliton solutions in this case are finite dimensional reductions of the hydrodynamic model and describe the propagation of lumps of density and velocity in the nontrivial background.Comment: 25 pages, 2 figure

    The impact of QCD plasma instabilities on bottom-up thermalization

    Full text link
    QCD plasma instabilities, caused by an anisotropic momentum distributions of the particles in the plasma, are likely to play an important role in thermalization in heavy ion collisions. We consider plasmas with two different components of particles, one strongly anisotropic and one isotropic or nearly isotropic. The isotropic component does not eliminate instabilities but it decreases their growth rates. We investigate the impact of plasma instabilities on the first stage of the ``bottom-up'' thermalization scenario in which such a two-component plasma emerges, and find that even in the case of non-abelian saturation instabilities qualitatively change the bottom-up picture.Comment: 12 pages, latex, one typo corrected, several minor changes in the abstract and the text, to appear in JHE

    Primordial Entropy Production and Lambda-driven Inflation from Quantum Einstein Gravity

    Full text link
    We review recent work on renormalization group (RG) improved cosmologies based upon a RG trajectory of Quantum Einstein Gravity (QEG) with realistic parameter values. In particular we argue that QEG effects can account for the entire entropy of the present Universe in the massless sector and give rise to a phase of inflationary expansion. This phase is a pure quantum effect and requires no classical inflaton field.Comment: 12 pages, 4 figures, IGCG-07 Pun

    Different Scenarios for Critical Glassy Dynamics

    Full text link
    We study the role of different terms in the NN-body potential of glass forming systems on the critical dynamics near the glass transition. Using a simplified spin model with quenched disorder, where the different terms of the real NN-body potential are mapped into multi-spin interactions, we identified three possible scenarios. For each scenario we introduce a ``minimal'' model representative of the critical glassy dynamics near, both above and below, the critical transition lin e. For each ``minimal'' model we discuss the low temperature equilibrium dynamics.Comment: Completely revised version, 8 pages, 5 figures, typeset using EURO-LaTeX, Europhysics Letters (in press

    Electrical transport properties of bulk MgB2 materials synthesized by the electrolysis on fused mixtures of MgCl2, NaCl, KCl and MgB2O4

    Full text link
    Electrolysis was carried out on fused mixtures of MgCl2, NaCl, KCl and MgB2O4 under an Ar flow at 600C. Electrical resistivity measurements for the grown deposits show an onset of superconducting transition at 37 K in the absence of applied magnetic field. The resistivity decreases down to zero below 32 K. From an applied-field dependence of resistivity, an upper critical field and a coherence length were calculated to be 9.7 T and 5.9 nm at 0 K, respectively

    The scalars from the topcolor scenario and the spin correlations of the top pair production at the LHC

    Full text link
    The topcolor scenario predicts the existences of some new scalars. In this paper, we consider the contributions of these new particles to the observables, which are related to the top quark pair (ttˉt\bar{t}) production at the LHC. It is found that these new particles can generate significant corrections to the ttˉt\bar{t} production cross section and the ttˉt\bar{t} spin correlations.Comment: 23 pages, 4 figures; discussions and references added; agrees with published versio

    Constraints on SUSY Lepton Flavour Violation by rare processes

    Full text link
    We study the constraints on flavour violating terms in low energy SUSY coming from several processes as li -> lj gamma, li -> lj lj lj and mu -> e in Nuclei. We show that a combined analysis of the processes allows us to extract additional information with respect to an individual analysis of all the processes. In particular, it makes possible to put bounds on sectors previously unconstrained by li -> lj gamma. We perform the analysis both in the mass eigenstate and in the mass insertion approximations clarifying the limit of applicability of these approximations.Comment: 23 pages, 15 figures. Typos corrected, several references and equations added. Results and conclusions completely unchanged. Accepted version for publication in JHE

    Heavy-light quark pseudoscalar and vector mesons at finite temperature

    Full text link
    The temperature dependence of the mass, leptonic decay constant, and width of heavy-light quark peseudoscalar and vector mesons is obtained in the framework of thermal Hilbert moment QCD sum rules. The leptonic decay constants of both pseudoscalar and vector mesons decrease with increasing TT, and vanish at a critical temperature TcT_c, while the mesons develop a width which increases dramatically and diverges at TcT_c, where TcT_c is the temperature for chiral-symmetry restoration. These results indicate the disappearance of hadrons from the spectral function, which then becomes a smooth function of the energy. This is interpreted as a signal for deconfinement at T=TcT=T_c. In contrast, the masses show little dependence on the temperature, except very close to TcT_c, where the pseudoscalar meson mass increases slightly by 10-20 %, and the vector meson mass decreases by some 20-30
    • 

    corecore